
DIPARTIMENTO DI INGEGNERIA ELETTRICA E DELLE
TECNOLOGIE DELL’INFORMAZIONE

CORSO DI LAUREA IN INFORMATICA

Progettazione di una base di dati per la gestione di un repository di software e delle attività
di testing ad esso correlate.

Giuliano Galloppi N86001508
Federico Maglione N86001405

Anno Accademico 2015/2016	 	 	 	 	 	 Professori: Adriano Peron
	 	 	 	 	 	 	 	 	 	 Alessandro De Luca  

!1

UNIVERSITÀ DEGLI STUDI DI NAPOLI
FEDERICO II

Indice

1. Analisi del problema 
 1.1 Descrizione del problema

	 1.2 Descrizione della progettazione

2. Progettazione Concettuale 
 2.1 Class Diagram  
 2.2 Class Diagram Ristrutturato 
 2.3 Dizionario dei dati  
 2.4 Documento dei vincoli 

3. Progettazione logica
3.1 Schema relazionale

	 3.2 Implementazione logica in SQL
	 3.3 Implementazione dei vincoli

4. Test Case
4.1 Esempio del Database

	 4.2 Esempio di Query Esemplificative
 

!2

1. Analisi del problema

1.1 Descrizione del problema:

La base di dati qui presentata permette la gestione di un repository di software e delle attività di
testing ad esso correlate.

Un repository è un ambiente di un sistema informativo, in cui vengono gestiti i metadati, attraverso
tabelle relazionali; l'insieme di tabelle, regole e motori di calcolo tramite cui si gestiscono i metadati
prende il nome di metabase. È un ambiente che può essere implementato attraverso numerose
piattaforme hardware e sistemi di gestione dei database.

Il database contiene i descrittori di progetti software, la loro strutturazione in moduli o packages. I
sorgenti SW non sono contenuti in un database ma sono contenuti in un file system. Il sistema
permette l'associazione tra i descrittori delle strutture dei vari livelli ed i file che li contengono
depositati nel file system. Per ciascun progetto esistono diverse versioni del progetto (release). Per
ogni progetto nel repository vengono ospitati anche i casi di test (da considerarsi a tutti gli effetti dei
sorgenti di codice) usati per validare un progetto. Nel database viene tenuta traccia di tutte le
esecuzioni dei casi di test e del loro esito. In particolare lo stesso caso di test può essere eseguito
più volte sulla stessa release del progetto e su release diverse dello stesso progetto. Per ogni
esecuzione di un caso di test viene tenuta traccia nel database di tutte le strutture che sono state
interessate dall'esecuzione (il livello più basso da considerare è quello del metodo).

1.2 Descrizione della progettazione:

La progettazione della base di dati è suddivisa in due punti:

• La progettazione concettuale , dove vengono proposti i due tipi di class diagram, con le relative
tabelle e associazioni che danno un’idea del funzionamento della costruzione del repository che
è stato presentato e di come sarà presentata la base di dati su di esso. A seguire è dato un
dizionario dei dati relativo alle tabelle del progetto, che descrivono le funzionalità dei vari attributi
ed un documento dei vincoli dove sono descritte normative per la funzionalità del repository.

• La progettazione logica descrive lo schema relazionale nel quale sono introdotte le tabelle con i
rispettivi attributi , chiavi primarie e vincoli di integrità referenziale (foreign key) . 

!3

https://it.wikipedia.org/w/index.php?title=Tabella_relazione&action=edit&redlink=1
https://it.wikipedia.org/w/index.php?title=Metabase&action=edit&redlink=1

Successivamente è presente un’implementazione logica in SQL dove le tabelle vengono
implementate coi vari vincoli e trigger.

Infine vi è un Test Case che descrive un esempio della base di dati e di query esemplificative che
permettono di reperire alcune informazioni dalla base di dati.

2. Progettazione Concettuale

2.1 Class Diagram

!4

2.2 Class Diagram Ristrutturato

Su questa ristrutturazione del Class Diagram sono state sostituite le generalizzazioni raggruppandole
in un unica classe come nei casi dell’ entità “Moduli” e “Packages” , esse sono state unificate in un
unica entità “Struttura” con l’aggiunta di un attributo “Tipo_struttura” che specifica se la struttura in
questione è un modulo o un pacchetto, l’entità “filePath” è diventata attributo delle entità “CaseTest”
e “Struttura” , invece l’entità “Esecuzione” è stata accorpata all’entità “CaseTest”.
 

!5

2.3 Dizionario dei dati

Entità Descrizione Attributi

ProgettoSoftware E’ il repository dei progetti,	 	 Nome: string - Nome del
	 	 	 contiene il nome e descrizione		 progetto.  
	 	 	 	 di ogni progetto.	 	 	
	 	 	 	 	 	 	 	 	 Descrizione: string -
	 	 	 	 	 	 	 	 	 Descrizione del progetto.	  

Release Contiene le release di ogni 	 	 Versione: real - numero
	 	 	 	 progetto.	 	 	 	 di versione del progetto.
	 	 	 	
CaseTest Casi di test utilizzati per validare	 Autore: string - Persona
	 	 	 	 il progetto.	 	 	 	 che ha eseguito il test.

	 	 	 	 	 	 	 	 	 DataCreazione: Date - Data di
	 	 	 	 	 	 	 	 	 creazione del test.
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 DataChiusura: Date - Data di
	 	 	 	 	 	 	 	 	 chiusura del test.
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 Esito: char - Esito del test,
	 	 	 	 	 	 	 	 	 resituisce ‘P’ se ha successo,
	 	 	 	 	 	 	 	 	 ’N’ altrimenti.
	 	 	 	 	 	 	 	 	 num: int - numero del caso di
	 	 	 	 	 	 	 	 	 test.

	 	 	 	 	 	 	 	 	 filePath: string - percorso dei
	 	 	 	 	 	 	 	 	 sorgenti del caso di test.

	 	 	 	 	 	 	 	 	 Esecuzione: int - numero di
	 	 	 	 	 	 	 	 	 esecuzione del caso di test.
	 	 	 	 	 	 	 	 	 DataEsecuzione: Date - data
	 	 	 	 	 	 	 	 	 d’esecuzione del case test.

!6

Struttura Raccoglie la strutturazione di 	 	 Autore: string - autore del
	 	 	 	 ogni release del progetto software,	 pacchetto o modulo.
	 	 	 	 ogni release è strutturata in moduli	 	 	 	 	
	 	 	 	 o packages, se in packages è
	 	 	 	 riportata la loro strutturazione in altri DataCreazione: Date - Data
	 	 	 	 packages, classi o metodi. Essa	 di creazione della struttura.
	 	 	 	 riporta tutte le altre relative	 	 	 	 	 	
	 	 	 	 informazioni sulla struttura.
	 	 	 	 	 	 	 	 	 DataChiusura: Date - Data di
	 	 	 	 	 	 	 	 	 chiusura della struttura.

	 	 	 	 	 	 	 	 	 Tipo_struttura: string - Tipo
	 	 	 	 	 	 	 	 	 della struttura , può assumere
	 	 	 	 	 	 	 	 	 solo i valori “M” cioè “modulo”
	 	 	 	 	 	 	 	 	 oppure “P” cioè “package”.

	 	 	 	 	 	 	 	 	 PacchettoPkg: string - Nome
	 	 	 	 	 	 	 	 	 del/dei pacchetto/i contenuto/i
	 	 	 	 	 	 	 	 	 nella struttura “packages”.

	 	 	 	 	 	 	 	 	 ClassePkg: string - Nome
	 	 	 	 	 	 	 	 	 della/e classe/i contenuta/e
	 	 	 	 	 	 	 	 	 nel pacchetto “PacchettoPkg”
	 	 	 	 	 	 	 	 	 nella struttura “packages”.

	 	 	 	 	 	 	 	 	 MetodoPkg: string - Nome
	 	 	 	 	 	 	 	 	 del/dei metodo/i contenuto/i
	 	 	 	 	 	 	 	 	 nel pacchetto “PacchettoPkg” ,
	 	 	 	 	 	 	 	 	 nella classe “ClassePkg”
	 	 	 	 	 	 	 	 	 della struttura “packages”.

	 	 	 	 	 	 	 	 	 filePath: string - percorso dei
	 	 	 	 	 	 	 	 	 file sorgenti delle strutture.

	 	 	 	 	 	 	 	 	 Desc_modulo: string - descri-
	 	 	 	 	 	 	 	 	 zione del modulo usato.
	 	 	 	 	 	 	 	 	

!7

	 	 	 	 	 	 	 	 	

StruttureInteressate Rappresenta tutte le strutture 		 traccia_classe: string - traccia
<associazione>	 	 che sono state interessate	 	 dell’eventuale classe interessa-
	 	 	 	 dall’esecuzione di un caso di test.	 ta dall’esecuzione.	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 traccia_metodo: string -
	 	 	 	 	 	 	 	 	 traccia dell’eventuale metodo
	 	 	 	 	 	 	 	 	 interessato dall’esecuzione.

	 	 	 	 	 	 	 	 	 traccia_pacchetto: string -
	 	 	 	 	 	 	 	 	 traccia dell’eventuale pacchetto
	 	 	 	 	 	 	 	 	 interessato dall’esecuzione.

	 	 	 	 	 	 	 	 	 Traccia_modulo: string -
	 	 	 	 	 	 	 	 	 traccia della descrizione 	
	 	 	 	 	 	 	 	 	 dell’eventuale modulo
	 	 	 	 	 	 	 	 	 interessato dall’esecuzione.

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	  

!8

2.4 Documento dei vincoli

1. “Tipo_Struttura” dell’entità Struttura può assumere solo come valori “M” che sta per “modulo”o
“P” che sta per “package” , tutti gli altri verranno rifiutati.

2. L’attributo “PacchettoPkg” assume valore NULL se “Tipo_Struttura” non ha valore “P”.

3. L’attributo “ClassePkg” assume valore NULL se “Tipo_Struttura” non ha valore “P”.

4. L’attributo “MetodoPkg” assume valore NULL se “Tipo_Struttura” non ha valore “P”.

5. L’attributo “Desc_modulo” assume valore NULL se “Tipo_Struttura” non ha valore “M”.

6. I metodi relativi ad una classe , per ogni classe , vanno inseriti tra parentesi quadre per essere
distinti e nell’ordine delle relative classi di appartenenza.

7. L’attributo “Esito” dell’entità CaseTest può assumere solo come valori “P” che sta per “positivo”
oppure “N” che sta per negativo, tutti gli altri verranno rifiutati.

8. Quando è inserito il pacchetto “PacchettoPkg” dell’entità “Struttura” si attiva un’eccezione che
inserisce il valore nell’ entità “StruttureInteressate” nell ‘attributo “traccia_pacchetto” per renderlo
reperibile dall’esecuzione associata ad esso.

9. Quando è inserita la classe “ClassePkg” dell’entità “Struttura” si attiva un’eccezione che inserisce
il valore nell’ entità “StruttureInteressate” nell’attributo “traccia_classe” per renderlo reperibile
dall’esecuzione associata ad esso.

10. Quando sono inseriti i metodi “MetodoPkg” dell’entità “Struttura” si attiva un’eccezione che
inserisce il valore nell’ entità “StruttureInteressate” nell’attributo “traccia_metodo” per renderlo
reperibile dall’esecuzione associata ad esso.

11. Quando è inserita la descrizione del modulo “Desc_modulo” dell’entità “Struttura” si attiva
un’eccezione che inserisce il valore nell’ entità “StruttureInteressate” nell’attributo “Traccia_modulo”
per renderlo reperibile dall’esecuzione associata ad esso.

!9

3. Progettazione logica

3.1 Schema relazionale

ProgettoSoftware (IdProgetto,Nome, Descrizione).

Release(IdRelease , Versione , IdProgetto, EsternaStruttura).

Struttura (IdStruttura, Autore, DataCreazione, DataChiusura, Tipo_struttura, PacchettoPkg,
ClassePkg, MetodoPkg, filePath, Desc_modulo, Estest).

CaseTest(Autore, DataCreazione, DataChiusura, Esito, num, filePath, Esecuzione, DataEsecuzione,
IdProgetto)

StruttureInteressate (esec_inter, IdStruttura,traccia_classe, traccia_metodo, traccia_pacchetto,
Traccia_modulo)

!10

3.2 Implementazione logica in SQL

CREATE TABLE ProgettoSoftware
(IdProgetto	 	 varchar(50)	 NOT NULL,
Nome	 	 	 char(25)	 NOT NULL,
Descrizione	 	 varchar(100),
PRIMARY KEY (IdProgetto));

• i vincoli ‘rif_prog’ e ‘rif_release’ garantiscono che quando un progetto è cancellato si
cancellino i dati ad esso correlati.

CREATE TABLE Release
(IdRelease	 	 varchar(50)	 	 NOT NULL,
Versione	 	 float(25)	 	 NOT NULL,
IdProgetto	 	 varchar(50)	 	 NOT NULL,
EsternaStruttura	 varchar(50)	 	 NOT NULL,
PRIMARY KEY(IdRelease),
CONSTRAINT rif_prog FOREIGN KEY(IdProgetto) REFERENCES ProgettoSoftware(IdProgetto)
	 	 	 	 	 ON DELETE CASCADE	 ON UPDATE CASCADE);
CONSTRAINT rif_release FOREIGN KEY (EsternaStruttura) REFERENCES Struttura(IdStruttura)
	 	 	 	 	 ON DELETE CASCADE	 ON UPDATE CASCADE);

• Il vincolo ‘tipo’ fa si che il valore dell’attributo ‘Tipo_struttura’ abbia solo valori ‘M’ cioè
‘modulo’ oppure ‘P’ cioè ‘package’.

• I vincoli ‘st_fk’ e ‘esec_fk’ garantiscono che quando una struttura è cancellata si
cancellino i dati ad essa correlati.

CREATE TABLE Struttura
(IdStruttura	 	 varchar(50)	 	 NOT NULL,
Autore	 	 	 char(25),
DataCreazione		 DATE,
DataChiusura	 	 DATE,
Tipo_struttura	 	 char(1)		 	 NOT NULL,
PacchettoPkg	 	 varchar(100)	 	 DEFAULT NULL,
ClassePkg	 	 varchar(100)	 	 DEFAULT NULL,
MetodoPkg	 	 varchar(100)	 	 DEFAULT NULL,
filePath		 	 varchar(100)	 	 UNIQUE NOT NULL,

!11

Desc_modulo	 	 varchar(100)	 	 DEFAULT NULL,
Estest	 	 	 int	 	 	 NOT NULL,	
PRIMARY KEY(IdStruttura),

CONSTRAINT st_fk FOREIGN KEY (IdRelease) REFERENCES Release (IdRelease)
	 	 	 	 ON DELETE CASCADE	 ON UPDATE CASCADE,
CONSTRAINT esec_fk FOREIGN KEY (Estest) REFERENCES CaseTest (Esecuzione)
	 	 	 	 ON DELETE CASCADE	 ON UPDATE CASCADE,
CONSTRAINT tipo CHECK (Tipo_struttura IN (‘M’ , ‘P’)));

• Il vincolo ‘esi’ fa si che l’attributo ‘Esito’ possa assumere solo valori come ‘P’ che sta
per positivo oppure ’N’ che sta per negativo.

• Il vincolo ‘test_fk’ garantisce che quando un case test è cancellato si cancellino i dati
ad esso correlati.

CREATE TABLE CaseTest (
Esecuzione	 	 int	 	 	 NOT NULL,
Autore	 	 	 char(25),
DataCreazione		 DATE,
DataChiusura	 	 DATE,
Esito	 	 	 char(1)		 	 NOT NULL,
num	 	 	 int	 	 	 NOT NULL,
filePath		 	 varchar(100)	 	 UNIQUE NOT NULL,
DataEsecuzione	 DATE,
IdProgetto	 	 varchar(50)	 	 NOT NULL,

PRIMARY KEY(Esecuzione),
CONSTRAINT test_fk FOREIGN KEY (IdProgetto) REFERENCES ProgettoSoftware (IdProgetto)
	 	 	 	 	 ON DELETE CASCADE	 ON UPDATE CASCADE),
CONSTRAINT esi CHECK (Esito IN (‘P’ , ’N’));

• I vincoli ‘intere’ e ‘st_fk’ garantiscono che quando una struttura interessata è cancellata
si cancellino i dati ad essa correlati.

CREATE TABLE StruttureInteressate (
esec_inter	 	 int	 	 	 NOT NULL,

!12

IdStruttura	 	 varchar(50)	 	 NOT NULL,
traccia_classe	 	 varchar(100)	 	 DEFAULT NULL,
traccia_metodo	 varchar(100)	 	 DEFAULT NULL,
traccia_pacchetto	 varchar(100)	 	 DEFAULT NULL,
Traccia_modulo	 varchar(100)	 	 DEFAULT NULL,
CONSTRAINT intere FOREIGN KEY (esec_inter) REFERENCES CaseTest (Esecuzione)
	 	 	 	 ON DELETE CASCADE	 ON UPDATE CASCADE,
CONSTRAINT st_fk FOREIGN KEY (IdStruttura) REFERENCES Struttura (IdStruttura)
	 	 	 	 ON DELETE CASCADE	 ON UPDATE CASCADE,
);

3.3 Implementazione dei vincoli
I vincoli dall’ 1 al 7 sono implementati nelle tabelle.
Vincoli 8,9,10,11.
• CREATE OR REPLACE TRIGGER vincoli
AFTER INSERT ON STRUTTURA
FOR EACH ROW
BEGIN
 INSERT INTO STRUTTUREINTERESSATE(IDSTRUTTURA, TRACCIA_CLASSE,
TRACCIA_METODO, TRACCIA_PACCHETTO, TRACCIA_MODULO, ESEC_INTER)
VALUES(:NEW.IDSTRUTTURA, :NEW.CLASSEPKG,:NEW.METODOPKG, :NEW.PACCHET
TOPKG, :NEW.DESC_MODULO, :NEW.ESTEST);
 END;
• CREATE OR REPLACE TRIGGER VINCOLO2
AFTER UPDATE ON STRUTTURA
FOR EACH ROW
 BEGIN
 UPDATE STRUTTUREINTERESSATE SI
 SET ESEC_INTER = :NEW.ESTEST , TRACCIA_CLASSE = :NEW.CLASSEPKG , 	
	 TRACCIA_METODO = :NEW.METODOPKG ,TRACCIA_MODULO
= :NEW.DESC_MODULO, TRACCIA_PACCHETTO = :NEW.PACCHETTOPKG
 WHERE :OLD.IDSTRUTTURA = SI.IDSTRUTTURA;
 END; 

!13

4 Test Case

4.1 Esempio di popolamento della Base di Dati

INSERT INTO ProgettoSoftware
VALUES (“0” , “Prog1”, “primo progetto”)

INSERT INTO Release
VALUES (“1” , 1.0 , “0”)

INSERT INTO Struttura
VALUES (“01” , “Mario Rossi” , 01/02/2015 , 02/02/2015 , “P” , “Primo” , “Numero, Casa ,
Automobile” , “[Ottieni_numero],[get_address, get_phone, get_info], [get_targa]” , “C:\Users
\Desktop”, “1”, NULL)

INSERT INTO CaseTest
VALUES (1,”Luca Bianchi” , 03/04/2015 , 03/04/2015 , “N” , 1, “C:\Users\Desktop\Test” , 1,
03/04/2015 , “0”)

INSERT INTO CaseTest
VALUES (1,”Luca Bianchi” , 03/04/2015 , 03/04/2015 , “P” , 1, “C:\Users\Desktop\Test” , 2,
04/04/2015 , “0”)

INSERT INTO CaseTest
VALUES (2,”Luca Bianchi” , 03/04/2015 , 03/04/2015 , “P” , 2, “C:\Users\Desktop\Test” , 1,
04/04/2015 , “0”)

INSERT INTO StruttureInteressate (esec_inter, IdStruttura)
VALUES (2, “01”)

!14

4.2 Esempio di Query Esemplificative

• Visualizzare descrizione e release di ogni progetto

SELECT 	 P.Descrizione , R.Versione , P.IdProgetto
FROM	 	 ProgettoSoftware AS P, Release AS R
WHERE	 P.IdProgetto=R.IdProgetto

• Visualizzare strutture di un determinato autore e la release più recente per ogni
tipo di struttura

SELECT Tipo_struttura, PacchettoPkg , ClassePkg , MetodoPkg , Desc_modulo, MAX(R.Versione)
FROM Struttura NATURAL JOIN Release AS R
WHERE Autore=‘Gennaro Esposito’
GROUP BY Tipo_struttura

• Lista degli esiti dei CaseTest con le strutture interessate per l’esecuzione di
esso in ordine della data di chiusura degli stessi

SELECT Struttura.DataChiusura, Esito, Tipo_struttura,traccia_classe, traccia_metodo,
traccia_pacchetto, Traccia_modulo
FROM StruttureInteressate AS s NATURAL JOIN Struttura, CaseTest AS c
WHERE c.IdTest = s.esec_inter
ORDER BY Struttura.DataChiusura

• Visualizzare il numero totale di case test raggruppati per progetto

SELECT Count(IdTest), IdProgetto
FROM ProgettoSoftware NATURAL JOIN ProgettoSoftware
GROUP BY IdProgetto

!15

