UNIVERSITA DEGLI STUDI DI NAPOLI
FEDERICO I

DIPARTIMENTO DI INGEGNERIA ELETTRICA E DELLE
TECNOLOGIE DELLINFORMAZIONE

CORSO DI LAUREA IN INFORMATICA

Progettazione di una base di dati per la gestione di un repository di software e delle attivita

di testing ad esso correlate.

Giuliano Galloppi N86001508
Federico Maglione N86001405

Anno Accademico 2015/2016 Professori: Adriano Peron
Alessandro De Luca

Indice

Analisi del problema
1.1 Descrizione del problema
1.2 Descrizione della progettazione

Progettazione Concettuale
2.1 Class Diagram

2.2 Class Diagram Ristrutturato
2.3 Dizionario dei dati
2.4 Documento dei vincoli

Progettazione logica
3.1 Schema relazionale
3.2 Implementazione logica in SQL
3.3 Implementazione dei vincoli

Test Case
4.1 Esempio del Database
4.2 Esempio di Query Esemplificative

1. Analisi del problema

1.1 Descrizione del problema:

La base di dati qui presentata permette la gestione di un repository di software e delle attivita di
testing ad esso correlate.

Un repository € un ambiente di un sistema informativo, in cui vengono gestiti i metadati, attraverso
tabelle relazionali; I'insieme di tabelle, regole e motori di calcolo tramite cui si gestiscono i metadati
prende il nome di metabase. E un ambiente che pud essere implementato attraverso numerose
piattaforme hardware e sistemi di gestione dei database.

Il database contiene i descrittori di progetti software, la loro strutturazione in moduli o packages. |
sorgenti SW non sono contenuti in un database ma sono contenuti in un file system. Il sistema
permette |'associazione tra i descrittori delle strutture dei vari livelli ed i file che li contengono
depositati nel file system. Per ciascun progetto esistono diverse versioni del progetto (release). Per
ogni progetto nel repository vengono ospitati anche i casi di test (da considerarsi a tutti gli effetti dei
sorgenti di codice) usati per validare un progetto. Nel database viene tenuta traccia di tutte le
esecuzioni dei casi di test e del loro esito. In particolare 1o stesso caso di test pud essere eseguito
piu volte sulla stessa release del progetto e su release diverse dello stesso progetto. Per ogni
esecuzione di un caso di test viene tenuta traccia nel database di tutte le strutture che sono state
interessate dall'esecuzione (il livello piu basso da considerare € quello del metodo).

1.2 Descrizione della progettazione:

La progettazione della base di dati € suddivisa in due punti:

* La progettazione concettuale , dove vengono proposti i due tipi di class diagram, con le relative
tabelle e associazioni che danno un’idea del funzionamento della costruzione del repository che
¢ stato presentato e di come sara presentata la base di dati su di esso. A seguire & dato un
dizionario dei dati relativo alle tabelle del progetto, che descrivono le funzionalita dei vari attributi
ed un documento dei vincoli dove sono descritte normative per la funzionalita del repository.

* La progettazione logica descrive 1o schema relazionale nel quale sono introdotte le tabelle con i
rispettivi attributi , chiavi primarie e vincoli di integrita referenziale (foreign key) .

https://it.wikipedia.org/w/index.php?title=Tabella_relazione&action=edit&redlink=1
https://it.wikipedia.org/w/index.php?title=Metabase&action=edit&redlink=1

Successivamente € presente un’implementazione logica in SQL dove le tabelle vengono
implementate coi vari vincoli e trigger.

Infine vi & un Test Case che descrive un esempio della base di dati e di query esemplificative che

permettono di reperire alcune informazioni dalla base di dati.

2.

2.1 Class Diagram

Progettazione Concettuale

ProgettoSoftware
«Ospita 1 +NOme
+Descrizione
L..
CaseTest
+Eseciuton: stnng Esscuzions
+DateCreazione 1.+ +Traccia +Esito
«DataChiusura +DataEsecuzione
+Esito +n_Esecuzione
+num
11

+Versione

1‘.'1
1.1

Struttura

+Descrizione

+Autore
+Data Creazione
+Data Chivsura

i1

2.2 Class Diagram Ristrutturato

Su questa ristrutturazione del Class Diagram sono state sostituite le generalizzazioni raggruppandole
in un unica classe come nei casi dell’ entita “Moduli” e “Packages” , esse sono state unificate in un
unica entita “Struttura” con I'aggiunta di un attributo “Tipo_struttura” che specifica se la struttura in
questione € un modulo o un pacchetto, I'entita “filePath” & diventata attributo delle entita “CaseTest”
e “Struttura” , invece I'entita “Esecuzione” & stata accorpata all’entita “CaseTest”.

ProgettoSoftware
+Ospita 1.1 +Nome
+Descrizione
A b
CaseTest
+Autore: string +Esiste
+DateCreazione s By
+Da§a0hiusura Release -
+Esito . 1.
+num +Versione
+filePath
+Esecuzione
+DataEsecuzione #Collega
« s
M |
Struttura
1.+ | +Autore
; +DataCreazione
: +DataChiusura
‘ +Tipo_struttura
a +PacchettoPkg
Struttureinteressate +ClassePkg
+traccia_classe +MetodoPkg
+traccia_metodo +filePath
+traccia_pacchetto +Desc_modulo
+Traccia_modulo

2.3 Dizionario dei dati

Entita

ProgettoSoftware

Release

CaseTest

Descrizione

E’ il repository dei progetti,
contiene il nome e descrizione
di ogni progetto.

Contiene le release di ogni
progetto.

Casi di test utilizzati per validare
il progetto.

Attributi

Nome: string - Nome del
progetto.

Descrizione: string -
Descrizione del progetto.

Versione: real - numero
di versione del progetto.

Autore: string - Persona
che ha eseguito il test.

DataCreazione: Date - Data di
creazione del test.

DataChiusura: Date - Data di
chiusura del test.

Esito: char - Esito del test,
resituisce ‘P’ se ha successo,
"N’ altrimenti.

num: int - numero del caso di
test.

filePath: string - percorso dei
sorgenti del caso di test.

Esecuzione: int - numero di
esecuzione del caso di test.
DataEsecuzione: Date - data
d’esecuzione del case test.

Struttura Raccoglie la strutturazione di Autore: string - autore del
ogni release del progetto software, pacchetto o modulo.
ogni release é strutturata in moduli
0 packages, se in packages &
riportata la loro strutturazione in altri DataCreazione: Date - Data
packages, classi o0 metodi. Essa di creazione della struttura.
riporta tutte le altre relative
informazioni sulla struttura.
DataChiusura: Date - Data di
chiusura della struttura.

Tipo_struttura: string - Tipo

della struttura , pud assumere
solo i valori “M” cioe “modulo”
oppure “P” cioe “package”.

PacchettoPkg: string - Nome
del/dei pacchetto/i contenuto/i
nella struttura “packages”.

ClassePkag: string - Nome
della/e classe/i contenuta/e
nel pacchetto “PacchettoPkg”
nella struttura “packages”.

MetodoPkg: string - Nome
del/dei metodo/i contenuto/i
nel pacchetto “PacchettoPkg” ,
nella classe “ClassePkg”

della struttura “packages”.

filePath: string - percorso dei
file sorgenti delle strutture.

Desc_modulo: string - descri-
zione del modulo usato.

Strutturelnteressate
<associazione>

Rappresenta tutte le strutture
che sono state interessate
dall’esecuzione di un caso di test.

traccia_classe: string - traccia
dell’eventuale classe interessa-
ta dall’esecuzione.

traccia_metodo: string -
traccia dell’eventuale metodo
interessato dall’esecuzione.

traccia_pacchetto: string -
traccia dell’eventuale pacchetto
interessato dall’esecuzione.

Traccia_modulo: string -
traccia della descrizione
dell’eventuale modulo
interessato dall’esecuzione.

2.4 Documento dei vincoli

1. “Tipo_Struttura” dell’entita Struttura pud assumere solo come valori “M” che sta per “modulo”o
“P” che sta per “package” , tutti gli altri verranno rifiutati.

2. Lattributo “PacchettoPkg” assume valore NULL se “Tipo_Struttura” non ha valore “P”.

3. Lattributo “ClassePkg” assume valore NULL se “Tipo_Struttura” non ha valore “P”.

4. Lattributo “MetodoPkg” assume valore NULL se “Tipo_Struttura” non ha valore “P”.

5. Lattributo “Desc_modulo” assume valore NULL se “Tipo_Struttura” non ha valore “M”.

6. | metodi relativi ad una classe , per ogni classe , vanno inseriti tra parentesi quadre per essere
distinti e nell’ordine delle relative classi di appartenenza.

7. Lattributo “Esito” dell’entita CaseTest pud assumere solo come valori “P” che sta per “positivo”
oppure “N” che sta per negativo, tutti gli altri verranno rifiutati.

8. Quando ¢ inserito il pacchetto “PacchettoPkg” dell’entita “Struttura” si attiva un’eccezione che
inserisce il valore nell’ entita “Strutturelnteressate” nell ‘attributo “traccia_pacchetto” per renderlo
reperibile dall’esecuzione associata ad esso.

9. Quando ¢ inserita la classe “ClassePkg” dell’entita “Struttura” si attiva un’eccezione che inserisce
il valore nell’ entita “Struttureinteressate” nell’attributo “traccia_classe” per renderlo reperibile
dall’esecuzione associata ad esso.

10. Quando sono inseriti i metodi “MetodoPkg” dell’entita “Struttura” si attiva un’eccezione che
inserisce il valore nell’ entita “Strutturelnteressate” nell’attributo “traccia_metodo” per renderlo
reperibile dall’esecuzione associata ad esso.

11. Quando ¢ inserita la descrizione del modulo “Desc_modulo” dell’entita “Struttura” si attiva
un’eccezione che inserisce il valore nell’ entita “Strutturelnteressate” nell’attributo “Traccia_modulo”
per renderlo reperibile dall’esecuzione associata ad esso.

3. Progettazione logica

3.1 Schema relazionale

ProgettoSoftware (IdProgetto,Nome, Descrizione).
Release(ldRelease , Versione , IdProgetto, EsternaStruttura).

Struttura (IdStruttura, Autore, DataCreazione, DataChiusura, Tipo_struttura, PacchettoPkg,
ClassePkg, MetodoPkg, filePath, Desc_modulo, Estest).

CaseTest(Autore, DataCreazione, DataChiusura, Esito, num, filePath, Esecuzione, DataEsecuzione,
IdProgetto)

Strutturelnteressate (esec_inter, |dStruttura,traccia_classe, traccia_metodo, traccia_pacchetto,
Traccia_modulo)

10

3.2 Implementazione logica in SQL

CREATE TABLE ProgettoSoftware

([dProgetto varchar(50) NOT NULL,
Nome char(25) NOT NULL,
Descrizione varchar(100),

PRIMARY KEY (ldProgetto));

i vincoli ‘rif_prog’ e ‘rif_release’ garantiscono che quando un progetto & cancellato si
cancellino i dati ad esso correlati.

CREATE TABLE Release

(IdRelease varchar(50) NOT NULL,
Versione float(25) NOT NULL,
IdProgetto varchar(50) NOT NULL,
EsternaStruttura varchar(50) NOT NULL,

PRIMARY KEY(ldRelease),
CONSTRAINT rif_prog FOREIGN KEY (IdProgetto) REFERENCES ProgettoSoftware(ldProgetto)
ON DELETE CASCADE ON UPDATE CASCADE);
CONSTRAINT rif_release FOREIGN KEY (EsternaStruttura) REFERENCES Struttura(ldStruttura)
ON DELETE CASCADE ON UPDATE CASCADE);

+ llvincolo ‘tipo’ fa si che il valore dell’attributo ‘Tipo_struttura’ abbia solo valori ‘M’ cioé
‘modulo’ oppure ‘P’ cioé ‘package’.

+ lvincoli ‘st_fk’ e ‘esec_fk’ garantiscono che quando una struttura & cancellata si
cancellino i dati ad essa correlati.

CREATE TABLE Struttura

(IdStruttura varchar(50) NOT NULL,

Autore char(25),

DataCreazione DATE,

DataChiusura DATE,

Tipo_struttura char(1) NOT NULL,

PacchettoPkg varchar(100) DEFAULT NULL,

ClassePkg varchar(100) DEFAULT NULL,

MetodoPkg varchar(100) DEFAULT NULL,
(100)

filePath varchar(100 UNIQUE NOT NULL,

11

Desc_modulo varchar(100) DEFAULT NULL,
Estest int NOT NULL,
PRIMARY KEY/(IdStruttura),

CONSTRAINT st_fk FOREIGN KEY (IdRelease) REFERENCES Release (IdRelease)
ON DELETE CASCADE ON UPDATE CASCADE,
CONSTRAINT esec_fk FOREIGN KEY (Estest) REFERENCES CaseTest (Esecuzione)
ON DELETE CASCADE ON UPDATE CASCADE,
CONSTRAINT tipo CHECK (Tipo_struttura IN (‘M’, ‘P));

* Il vincolo ‘esi’ fa si che I'attributo ‘Esito’ possa assumere solo valori come ‘P’ che sta
per positivo oppure ’N’ che sta per negativo.

« llvincolo ‘test_fk’ garantisce che quando un case test & cancellato si cancellino i dati
ad esso correlati.

CREATE TABLE CaseTest (

Esecuzione int NOT NULL,

Autore char(25),

DataCreazione DATE,

DataChiusura DATE,

Esito char(1) NOT NULL,

num int NOT NULL,

filePath varchar(100) UNIQUE NOT NULL,
DataEsecuzione DATE,

IdProgetto varchar(50) NOT NULL,

PRIMARY KEY (Esecuzione),

CONSTRAINT test_fk FOREIGN KEY (IdProgetto) REFERENCES ProgettoSoftware (IdProgetto)
ON DELETE CASCADE ON UPDATE CASCADE),

CONSTRAINT esi CHECK (Esito IN (‘P’, 'N"));

« lvincoli ‘intere’ e ‘st_fk’ garantiscono che quando una struttura interessata e cancellata
si cancellino i dati ad essa correlati.

CREATE TABLE Strutturelnteressate (
esec_inter int NOT NULL,

12

|dStruttura varchar(50) NOT NULL,

traccia_classe varchar(100) DEFAULT NULL,
traccia_metodo varchar(100) DEFAULT NULL,
traccia_pacchetto varchar(100) DEFAULT NULL,
Traccia_modulo varchar(100) DEFAULT NULL,

CONSTRAINT intere FOREIGN KEY (esec_inter) REFERENCES CaseTest (Esecuzione)

ON DELETE CASCADE ON UPDATE CASCADE,
CONSTRAINT st_fk FOREIGN KEY (ldStruttura) REFERENCES Struttura (IdStruttura)

ON DELETE CASCADE ON UPDATE CASCADE,

3.3 Implementazione dei vincoli
| vincoli dall’ 1 al 7 sono implementati nelle tabelle.
Vincoli 8,9,10,11.
e CREATE OR REPLACE TRIGGER vincoli
AFTER INSERT ON STRUTTURA
FOR EACH ROW
BEGIN
INSERT INTO STRUTTUREINTERESSATE(IDSTRUTTURA, TRACCIA_CLASSE,
TRACCIA_METODO, TRACCIA_PACCHETTO, TRACCIA_MODULO, ESEC_INTER)
VALUES(NEW.IDSTRUTTURA, :NEW.CLASSEPKG,:NEW.METODOPKG, :NEW.PACCHET
TOPKG, :NEW.DESC_MODULO, :NEW.ESTEST);
END;
e CREATE OR REPLACE TRIGGER VINCOLOZ2
AFTER UPDATE ON STRUTTURA
FOR EACH ROW
BEGIN
UPDATE STRUTTUREINTERESSATE Sl
SET ESEC_INTER = :NEW.ESTEST , TRACCIA_CLASSE = :NEW.CLASSEPKG ,
TRACCIA_METODO = :NEW.METODOPKG ,TRACCIA_MODULO
= :NEW.DESC_MODULO, TRACCIA_PACCHETTO = :NEW.PACCHETTOPKG
WHERE :OLD.IDSTRUTTURA = SIIDSTRUTTURA,;
END;

13

4 Test Case

4.1 Esempio di popolamento della Base di Dati

INSERT INTO ProgettoSoftware
VALUES (“0”, “Prog1”, “primo progetto”)

INSERT INTO Release
VALUES (“1”,1.0, “0")

INSERT INTO Struttura

VALUES (“01”, “Mario Rossi” , 01/02/2015 , 02/02/2015 , “P” , “Primo” , “Numero, Casa ,
Automobile” , “[Ottieni_numero],[get_address, get_phone, get_info], [get_targa]” , “C:\Users
\Desktop”, “1”, NULL)

INSERT INTO CaseTest
VALUES (1,”Luca Bianchi” , 03/04/2015 , 03/04/2015, “N”, 1, “C:\Users\Desktop\Test” , 1,
03/04/2015 , “0”)

INSERT INTO CaseTest
VALUES (1,”Luca Bianchi” , 03/04/2015 , 03/04/2015 , “P” , 1, “C:\Users\Desktop\Test” , 2,
04/04/2015 , “0”)

INSERT INTO CaseTest
VALUES (2,”Luca Bianchi” , 03/04/2015 , 03/04/2015 , “P”, 2, “C:\Users\Desktop\Test” , 1,
04/04/2015, “0”)

INSERT INTO Strutturelnteressate (esec_inter, IdStruttura)
VALUES (2, “01”)

14

4.2 Esempio di Query Esemplificative

- Visualizzare descrizione e release di ogni progetto

SELECT P.Descrizione , R.Versione , P.IdProgetto
FROM ProgettoSoftware AS P, Release AS R
WHERE P.IdProgetto=R.IdProgetto

* Visualizzare strutture di un determinato autore e la release piu recente per ogni
tipo di struttura

SELECT Tipo_struttura, PacchettoPkg , ClassePkg , MetodoPkg , Desc_modulo, MAX(R.Versione)
FROM Struttura NATURAL JOIN Release AS R

WHERE Autore=‘Gennaro Esposito’

GROUP BY Tipo_struttura

* Lista degli esiti dei CaseTest con le strutture interessate per I'esecuzione di
esso in ordine della data di chiusura degli stessi

SELECT Struttura.DataChiusura, Esito, Tipo_struttura,traccia_classe, traccia_metodo,
traccia_pacchetto, Traccia_modulo

FROM Strutturelnteressate AS s NATURAL JOIN Struttura, CaseTest AS ¢

WHERE c.IdTest = s.esec_inter

ORDER BY Struttura.DataChiusura

- Visualizzare il numero totale di case test raggruppati per progetto

SELECT Count(ldTest), IdProgetto
FROM ProgettoSoftware NATURAL JOIN ProgettoSoftware
GROUP BY IdProgetto

15

